The intensity function (or hazard function) for the Gompertz-Makeham law of mortality distribution is defined as $$h(x) = \alpha e^{\beta x} + \lambda$$ with \(\alpha, \beta, \lambda \in {R}_+\).

gompertz(alpha, beta, lambda = 0)

Arguments

alpha

Non-negative real parameter.

beta

Non-negative real parameter.

lambda

Non-negative real parameter.

Value

Function which associates x to \(\alpha exp(\beta x) + \lambda\).

Details

A C++ version of this function is available. See vignette('IBMPopSim_cpp') for more details.